Kode genetic yaitu instruksi berupa kode-kode yang merumuskan jenis protein yang akan dibuat. Instruksi kode genetic tersebut diperintahkan oleh DNA dalam sintesis protein.
Cirri-ciri kode genetic menurut Nirenberg,dkk (1961) yaitu :
a. Terdiri dari triplet artinya tiap 1 kodon terdiri dari 3 basa
b. Non overlapping artinya susuna 3 basa pada kodon berbeda dengan kodon yang lain.
c. Degenerate artinya 1 asam amino mempunyai kodon lebih dari satu.
d. Universal , artinya kode yang sama berlaku untuk semua makhluk hidup.
Cirri khas protein ditentukan oleh jumlah asam amino, macam dan urutan asam amino yang membangun. Terdapat 20 macam asam amino di dalam tersusun dari 4 macam basa nitrogen pada molekul RNAd, yaitu Adenin (A), Urasil (U0, Sitosis (S) dan Guanin (G).
Dari keempat basa tersebut, dapat tersusun 64 triplet kodon, padahal macam asam amino yang ada hanya 20. Dengan demikian terdapat kodong-kodon sinonim (degenerate) , artinya satu asam amino dikode lebih dari satu kodon.
DNA merupakan bahan genetika yang memberi informasi dari satu generasi ke generasi berikutnya. Informasi yang terdapat dalam molekul DNA, yaitu berupa kode-kode yang terjadi dari dua deretan rantai basa nitrogen yang berpilin. Apabila pilinan tersebut membuka, maka rantai yang membentuk mRNA disebut rantai bermakna (DNA sense) sedangkan apabila rantai tersebut tidak membentuk mRNA disebut rantai tak bermakna (DNA antisense).
Macam-macam basa nitrogen yang menjadi kode-kode ada empat, yaitu Sitosin (S), Timin (T), Adenin (A), dan Guanin (G). Jenis kode yang digunakan untuk kode asam-asam amino yang berjumlah 20 adalah sebagai berikut.
1 . Kemungkinan Kode Singlet
Kemungkinan kode singlet terjadi apabila suatu nukleotida memberi kode satu asam amino, atau 41 = 4 kodon, untuk sampai berjumlah 20, maka kode ini masih kurang 16, sehingga kode ini tidak memenuhi syarat, karena hanya mengkode 4 asam amino saja.
2 . Kemungkinan Kode Duplet
Kemungkinan kode duplet terjadi apabila dua nukleotida memberi kode satu asam amino, atau 42 = 16 kodon. Kode ini pun hanya memben- tuk 16 kodon sehingga kode ini masih kurang 4.
3 . Kemungkinan Kode Triplet
Kemungkinan kode triplet terjadi apabila tiga nukleotida memberi kode satu asam amino, 43 = 64 kodon. Kode ini akan memiliki kelebihan yaitu 64 – 20 = 44 kodon, tapi ini tidak menjadi masalah.
Kode ini cukup walaupun satu asam amino harus mempunyai
64 : 20 = ± 3 macam kode basa nitrogen.
Penelitian tentang kode genetika ini dikemukakan oleh M. Nirenberg
(1961) dan H. Mathei (1961) dan kemudian diperkuat oleh G.H. Khorama
(1964). Kode genetika adalah kode yang dibawa oleh mRNA untuk disampai- kan ke tRNA. Kode genetika yang merupakan urutan tiga basa nitrogen yang membentuk suatu triplet disebut kodon dapat Anda lihat pada Tabel 3.3.
Coba Anda perhatikan Tabel 3.3. Pada tabel tersebut terdapat kodon AUG, kodon ini disebut juga kodon start karena untuk memulai sintesis polipeptida, sedangkan UAG, UGA, dan UAA disebut kode tak bermakna atau stop untuk mengakhiri dari suatu protein. Kodon-kodon ini bukan merupakan kode untuk semua asam amino.
Gen tertentu membawa informasi yang dibutuhkan untuk membuat protein dan informasi itulah yang disebut sebagai kode genetik. Dengan kata lain, kode genetik adalah cara pengkodean urutan nukleotida pada DNA atau RNA utnuk menentukan urutan asam amino pada saat sintesis protein. Informasi pada kode genetik ditentukan oleh basa nitrogen pada rantai DNA yang akan menentukan susunan asam amino.
Dalam tahun 1968 nirenberg, khorana dan Holley menerima hadiah nobel untuk penelitian mereka yang sukses menciptakan kode-kode genetik yang hingga sekarang kita kenal. Seperti kita ketahui asam amino dikenal ada 20 macam. Yang menjadi masalah bagaimana 4 basa nitrogen ini dapat mengkode 20 macam asam amino yang diperlukan untuk mengontrol semua aktifitas sel?
Para peneliti melakukan penelitian pada bakteri E. Coli mula mula digunakan basa nitrogen singlet maka diper oleh 4 asam amino saja yang dapat diterjemahkan padahal ke 20 asam amino ini harus diterjemahkan semua agar protein yang dihasilkan dapat digunakan, kemudian para ilmuwan mencobalagi dengan kodon duplet dan baru dapat untuk menterjemahlkan 16 asam amino ini pun belum cukup juga. Kemudian dicoba dengan triplet dan dapat menterjemahkan 64 asam amino hal ini tidak mengapa sekalipun melebihi 20 asam amino toh dari 64 asam amino yang diterjemahkan ada yang memilii simbul/fungsi yang sama diantaranya (kodon asam assparat(GAU dan GAS) sama dengan asam
asam tirosin(UAU,UAS) sama juga dengan triptopan(UGG) bahkan ini sangat menguntungkan pada proses pembentukkan protein karena dapat menggantikan asam amino yang kemungkinan rusan selain itu dari 20 asam amino diantaranya ada yang berfungsi sebagai agen pemotong gen atau tidak dapat bersambung lagi dengan doubel helix asam amino yang berfungsi sebagai agen pemotong gen diantaranya (UAA,UAG,UGA)
beberapa sifat dari kode triplet diantaranya :
1. kode genetik ini mempunyai banyak sinonim sehingga hampir setiap asam amino dinyatakan oleh lebih dari sebuah kodon. Contoh semua kodon yang diawali dengan SS memperinci prolin,(SSU,SSS,SSA dan SSG) semua kodon yang diawali dengan AS memperinci treosin(ASU,ASS,ASA,ASG).
2. tidak tumpang tindih,artinya tiada satu basa tungggalpun yang dapat mengambil bagian dalam pembentukan lebih dari satu kodon,sehingga 64 itu berbeda-beda nukleotidanya.
3. kode genetik dapat mempunyai dua arti yaitu kodon yang sama dapat memperinci lebih dari satu asam amino.
4. kode genetik itu ternyata universal
Tiap triplet yang mewakili informasi bagi suatu asam amino tertentu dinyatakan sebagai kodon.Kode genetika bersifat degeneratif dikarenakan 18 dan 20 macam asam amino ditentukan oleh lebih dari satu kodon, yang disebut kodon sinonimus.Hanya metionin dan triptofan yang memiliki kodon tunggal.Kodon sinonimus tidak ditempatkan secara acak, tetapi dikelompokkan.Kodon sinnonimus memiliki perbedaan pada urutan basa ketiga.
SINTESIS PROTEIN
anatomi-ribosom
Ada banyak tahapan antara ekspresi genotip ke fenotip.Gen-gen tidak dapat langsung begitu saja menghasilkan fenotip-fenotip tertentu.Fenotip suatu individu ditentukan oleh aktivitas enzim (protein fungsional).Enzim yang berbeda akan menimbulkan fenotip yang berbeda pula.Perbedaan satu enzim dengan enzim yang lain ditentukan oleh jumlah jenis dan susunan asam amino penyusun protein enzim.Pembentukan asam amino ditentukan oleh gen atau DNA.
Ekspresi gen merupakan proses dimana informasi yang dikode di dalam gen diterjemahkan menjadi urutan asam amino selama sintesis protein.Dogma sentral mengenai akspresi gen, yaitu DNA yang membawa informasi genetik yang ditrnaskripsi oleh RNA, dan RNA diterjemahkan menjadi polipeptida.Ekspresi gen merupakan sintesis protein yang terdiri dari dua tahap, yaitu tahap pertama urutan rantai nukleotida tempale (cetakan) dari suatu DNA untai ganda disalin untuk menghasilkan satu rantai molekul RNA.Proses ini disebut transkripsi dan berlangsung di inti sel.Tahap kedua merupakan sintesis pilopeptida dengan urutan spesifik berdasarkan rantai RNA yang dibuat pada tahap pertama.Proses ini disebut translasi.
Transkripsi
transkripsi-dan-translasi
Transkripsi merupakan sintesis RNA dari salah satu rantai DNA, yaitu rantai cetakan atau sense, sedangkan rantai DNA komplemennya disebut rantai antisense.Rentangan DNA yang ditranskripsi menjadi molekul RNA disebut unit transkripsi.
RNa dihasilkan dari aktivitas enzim RNA polimerase.Transkripsi terdiri dari tiga tahap, yaitu inisiasi (permulaan), elongasi (pemanjangan), dan terminasi (pengakhiran) rantai RNA.
Inisiasi
Daerah DNA dimana RNA polimerase melekat dan mengawali transkripsi disebut promoter.Suatu promoter mencakup titik awal transkripsi dan biasanya membentang beberapa pasangan nukleotida di depan titik awal tersebut.Selain itu, promoter juga menentukan di mana transkripsi dimulai, promoter juga menentukan yang mana dari kedua untai heliks DNA yang digunakan sebagai cetakan.
Elogasi
Setelah sintesis RNA berlangsung, NDA heliks ganda terbentuk kembali dan molekul RNA baru akan dilepas dari cetakan DNA-nya.Transkripsi berlanjut pada laju kira-kira 60 nukleotida per detik pada sel eukariotik.
Terminasi
Transkripsi berlangsung sampai RNA polimerase mentranskripsi urutan DNA yang disebut terminator.Terminator merupakan suatu urutan DNA yang berfungsi menghentikan proses transkripsi.Pada sel prokariotik, transkripsi biasanya berhenti tepat pada saat RNA polimerase mencapai titik terminasi.Sedangkan pada sel eukariotik, RNA pilomerase terus melawati titik terminasi.RNA yang telah terbentuk akan terlepas dari enzim tersebut.
Translasi
Dalam proses translasi, sel menginterpretasikan suatu kode genetik menjadi protein yang sesuai.Kode geneti tersebut berupa serangkaian kodon di sepanjang molekul RNAd, interpreternya adalah RNAt.RNAt mentransfer asam amino-asam amino dari kolam asam amino di sitoplasma ke ribosom.Molekul RNAt tidak semuanya identik.Pada tiap asam amino digabungkan dengan RNAt yang sesuai oleh suatu enzim spesifik yang disebut aminoasil-RNAt sintetase ( aminoacyl-tRNA synthetase ).Ribosom memudahkan pelekatan yang spesifik antara antikodon RNAt dengan kodon RNAd selama sintesis protein.Sebuah ribosom tersusun dari dua subunit, yaitu subunit besar dan subunit kecil.Subunit ribosom dibangun oleh protein-protein dan molekul-molekul RNAr.
Tahap translasi dapat dibagi menjadi tiga tahap seperti transkripsi, yaitu inisiasi elongasi, dan terminasi.Semua tahapan ini memerlukan faktor-faktor protein yang membantu RNAd, RNAt, dan ribosom selama proses translasi.Inisiasi dan elongasi rantai polipeptida jga membutuhkan sejumlah energi yang disediakan oleh GTP (guanosin triphosphat), suatu molekul yang mirip ATP.
inisiasi
Tahap inisiasi dari translasi terjadi dengan adanya RNAd, sebuah RNAt yang memuat asam amino pertma dari polipeptida, dan dua subunit ribosom.Pertama, subunit ribosom kecil mengikatkan diri pada RNAd dan RNAt inisiator.Di dekat tempat pelekatan ribosom subunit kecil pada RNAd terdapat kodon inisiasi AUG, yang memberikan sinyal dimulainya proses translasi.RNAt inisiator, yang membawa asam amino metionin, melekat pada kodon inisiasi AUG.
Oleh karenanya, persyaratan inisiasi adalah kodon RNAd harus mengandung triplet AUG dan terdapat RNAt inisiator berisi antikodon UAC yang membawa metionin.Jadi pada setiap proses translasi, metionin selalu menjadi asam amino awal yang diingat.Triplet AUG dikatakan sebagai start codon karena berfungsi sebagai kodon awal translasi.
Elongasi
Pada tahap elongasi dari translasi, asam amino berikutnya ditambahkan satu per satu pada asam amino pertama (metionin).
Pada ribosom membentuk ikatan hidrogen dengan antikodon molekul RNAt yang komplemen dengannya.Molekul RNAr dari subunit ribosom besar berfungsi sebagai enzim, yaitu mengkatalisis pembentukan ikatan peptida yang menggabungkanpolipeptida yang memanjang ke asam amino yang baru tiba.Pada tahap ini polipeptida memisahkan diri dari RNAt tempat perlekatannya semula, dan asam amino pada ujung karboksilnya berikatan dengan asam amino yang dibawa oleh RNAt yang baru masuk.Saat RNAd berpindah tempat, antikodonnya tetap berikatan dengan kodon RNAt.RNAd bergerak bersama-sama dengan antikodon dan bergeser ke kodon berikutnya yang akan ditranslasi.Sementara itu, RNAt yang tanpa asam amino telah diikatkan pada polipeptida yang sedang memanjang dan selanjutnya RNAt keluar dari ribosom.Langkah ini membutuhkan energi yang disediakan oleh hirolisis GTP.Kemudian RNAd bergerak melalui ribosom ke satu arah saja, kodon satu ke kodon lainnya hingga rantai polipeptidanya lengkap.
terminasi
Tahap akhir translasi adalah terminasi.Elongasi berlanjut hingga ribosom mencapai kodon stop.Triplet basa kodon stop adalah UAA, UAG, atau UGA.Kodon stop tidak mengkode suatu asam amino melainkan bertindak sebagai sinyal untuk menghentikan translasi.
Diambil dari :
http://gurungeblog.wordpress.com/2008/11/15/kode-genetik/
http://id.shvoong.com/exact-sciences/2002754-kode-genetik/
Biologi untuk kelas 3 SMA/MA oleh : Iddun kistinnah & Endang Sri Lestari
Langganan:
Posting Komentar (Atom)
0 komentar:
Posting Komentar